10. Elastic Stability

Initialization

Needs["TensorCalculus4`Tensorial`"]

Needs["TContinuumMechanics2`TContinuumMechanics`"]

Needs["DrawGraphics`DrawingMaster`"]

numequ = 1 ;

oldflavors = IndexFlavors ;

ClearIndexFlavor/@oldflavors ;

DeclareIndexFlavor[{black, Black}, {red, Red}, {green, ForestGreen}, {star, SuperStar}, {blue, Blue}, {hat, OverHat}, {tilde, OverTilde}, {bar, OverBar}]

Base2d = {1, 2} ;

Base3d = {1, 2, 3} ;

DeclareBaseIndices[Base3d] ; {NDim, BaseIndices} ;

TensorLabelFormat[h, OverHat[]]

TensorLabelFormat[uh, OverHat[u]]

TensorLabelFormat[σh, OverHat[σ]]

TensorLabelFormat[b, OverBar[]]

TensorLabelFormat[gb, OverBar[g]]

TensorLabelFormat[σb, OverBar[σ]]

TensorLabelFormat[eb, OverBar[e]]

TensorLabelFormat[Nb, OverBar[N]]

TensorLabelFormat[Γb, OverBar[Γ]]

TensorLabelFormat[Xb, OverBar[X]]

TensorLabelFormat[b, OverBar[]]

TensorLabelFormat[ub, OverBar[u]]

labsz = {x, δ, g, Γb} ;

labs0 = {x, δ, a, Γ} ;

Clear[SymbolSpaceDimension] ;

Table[Func[(SymbolSpaceDimension/@{, g, h, b, eb, Γb})[[ind]], 3], {ind, 6}]/.Func→Set ;

Table[Func[(SymbolSpaceDimension/@{, a, e, Γ})[[ind]], 2], {ind, 4}]/.Func→Set ;

Elastic stability

The purpose of this chapter is to consider transitions of elastic structures to to degenerated states of stress. Such a transition, which appears above some critical load, is known as buckling os the structure. This suppose non linear effects in particular the equilibrium condition (6.4) can no more remain linear: In this equation, the stress acts on a volume element considered as undeformed. This is not the case in reality, but when the deformations are small,this approximation is good enough.
    When the load is gradually increased to its critical value, the stresses and the displacements approach everywhere definite limiting values which we denote here by Overscript[σ, _] _ (ij)^(ij) and  Overscript[u, _] _k^k.
        As soon as this critical state has been reached, an adjacent state called a buckled state, becomes possible, for which the stress are,

σhuu[red @ i, red @ j] == σbuu[red @ i, red @ j] + σuu[red @ i, red @ j]

Overscript[σ,^] _ (ij)^(ij) == σ_ (ij)^(ij) + Overscript[σ, _] _ (ij)^(ij)

and the displacements,

uhd[red @ k] == ud[red @ k] + ubd[red @ k]

Overscript[u,^] _k^k == u_k^k + Overscript[u, _] _k^k

Formulation of the differential equations of the problem :

As before, we use a coordinate system x_ i^i which is deformed with the body.  In the critical state the base vectors are Overscript[, _] _i^i==Overscript[, _] _ (, i) with the metric tensor Overscript[g, _] _ (ij)^(ij). This will be used as the reference frame

PartialD[Tensor[b], red @ i_] := bd[red @ i]

The rectangular body element in figure 10.1 is in the critical state. The face ds×dt on its right-hand side has the area,

resdAd = dAd[red @ l] == (dAd§ = dsu[red @ j] dtu[red @ k] ebddd[red @ j, red @ k, red @ l])

dA_l^l == ds_j^j dt_k^k Overscript[e, _] _ (jkl)^(jkl)

Figure 10.1 :

[Graphics:HTMLFiles/index_44.gif]

Figure 10.1 Stress acting on a volume element in the prebuckling state.

In the buckled state the base vectors are,

res1 = hd[red @ m] == PartialD[Tensor[b] + Tensor[], red @ m] == bd[red @ m] + CovariantD[uu[red @ n], red @ m] bd[red @ n]

Overscript[,^] _m^m == _ (, m) + Overscript[, _] _m^m == Overscript[, _] _m^m + u_n^n_ (; m) Overscript[, _] _n^n

and the force acting is written,

σhuu[red @ l, red @ m] hd[red @ m] dAd[red @ l]

dA_l^l Overscript[,^] _m^m Overscript[σ,^] _ (lm)^(lm)

where we still refer to the area before buckling, but using the postbuckling components h_ m^m. The incremental stress σ_ (i  j)^(i  j)is defined by

res2 = σhuu[red @ l, red @ m] == σbuu[red @ l, red @ m] + σuu[red @ l, red @ m]

Overscript[σ,^] _ (lm)^(lm) == σ_ (lm)^(lm) + Overscript[σ, _] _ (lm)^(lm)

The force dA_l^l Overscript[,^] _m^m Overscript[σ,^] _ (lm)^(lm) on the right hand side of the volume element may be written,

omiitting the term u_n^n_ (; m) σ_ (lm)^(lm) of higher order.

Now, we go back to the derivation of (6.4) for the above volume element. We apply first (6.4) to the stresses before buckling,

(*10.1*)ResultFrame[res101 = CovariantD[σbuu[red @ l, red @ m], red @ l] + Xbu[red @ m] == 0]

      Overscript[σ, _] _ (lm)^(lm) _ (; l) + Overscript[X, _] _m^m == 0      (10.1)

where Overscript[X, _] _m^mis the volume force then acting. After buckling, the force acting on the pair of faces  ds×dt  of the body is changed by,

The covariant derivative of Overscript[, _] _m^m is zero,
SetScalarSingleCovariantD is added to preserve the covariant derivative of X(= σ_ (lm)^(lm)+Overscript[σ, _] _ (lm)^(lm)+u_m^m_ (; n) Overscript[σ, _] _ (ln)^(ln)).

SetScalarSingleCovariantD[False]
rul=CovariantD[Tensor[Tensor[eb, {Void}, {red[m]}]*
   X_], red[i]]→(CovariantD[Tensor[Tensor[eb, {Void}, {red[m]}]*
   Tensor[X]], red[i]]//UnnestTensor//CovariantDSimplify[eb,g,e])

(X_ Overscript[, _] _m^m) _ (; i) →X_ (; i) Overscript[, _] _m^m

res = res/.rul

and the same development can be done for the two other pairs of faces, so that the resultant force of all the stresses is,

res1 = Coefficient[ res[[2]], dr_i^i ds_j^j dt_k^k  Overscript[, _] _m^m] ;

res2 = (res1 + (res1/.{i→j, j→k, k→i}) + (res1/.{i→k, k→j, j→i})) dr_i^i ds_j^j dt_k^k  Overscript[, _] _m^m

and this expression can be simplified in a way similar to Chapter 5 (in the Gauss's divergence theorem), which can then be compared to result  (dr_ i^i ds_ j^j dt_ k^k Overscript[e, _] _ (ijk)^(ijk) v_ (h  ;  h)^(h  ;  h)) :

%//SumExpansion[red @ i, red @ j, red @ k, red @ l]//LeviCivitaOrder[eb]//Simplify

True

so that the resultant force of all the stresses is,

This force is in equilibrium with the body force after buckling,

(*10.3*)ResultFrame[res103 = (Xbu[red @ m] + Xu[red @ m]) dru[red @ i] dsu[red @ j] dtu[red @ k] bd[red @ m] ebddd[red @ i, red @ j, red @ k]]

      dr_i^i ds_j^j dt_k^k Overscript[e, _] _ (ijk)^(ijk) (X_m^m + Overscript[X, _] _m^m) Overscript[, _] _m^m      (10.3)

where X_ m^mis the incremental force.
From (10.1), (10.2) and (10.3) we have,

res101

res102

res103 == -Total Stress   (*  at equilibrium  *)

Overscript[σ, _] _ (lm)^(lm) _ (; l) + Overscript[X, _] _m^m == 0

dr_i^i ds_j^j dt_k^k Overscript[e, _] _ (ijk)^(ijk) (X_m^m + Overscript[X, _] _m^m) Overscript[, _] _m^m == -Total Stress

res = res102/.Total Stress→ -(res103/.Solve[res101, Overscript[X, _] _m^m][[1]])//UnnestTensor//FullSimplify

Print["Part of this expression can be collect as a covariant derivative"]

Print["so that,"]

RES = res/.res1→res2

Part of this expression can be collect as a covariant derivative

u_m^m_ (; n) Overscript[σ, _] _ (ln)^(ln) _ (; l) + u_m^m_ (; nl) Overscript[σ, _] _ (ln)^(ln) == (Overscript[σ, _] _ (ln)^(ln) u_m^m_ (; n)) _ (; l)

so that,

dr_i^i ds_j^j dt_k^k Overscript[e, _] _ (ijk)^(ijk) (σ_ (lm)^(lm) _ (; l) + (Overscript[σ, _] _ (ln)^(ln) u_m^m_ (; n)) _ (; l) + X_m^m) Overscript[, _] _m^m == 0

The factor dr_ i^i ds_ j^j dt_ k^k Overscript[e, _] _ (ijk)^(ijk) can be droped, and the above relation will be valid for all the coefficients of the Overscript[, _] _m^m so that,

(*10.4*)ResultFrame[res104 = (RES[[1, 5]]/.{m→i, n→k, l→j}) == 0]

      σ_ (ji)^(ji) _ (; j) + (Overscript[σ, _] _ (jk)^(jk) u_i^i_ (; k)) _ (; j) + X_i^i == 0      (10.4)

This equation, together with the elastic law (4.3) or (4.11), and the kinematic relation (6.2) applied to the incremental quantities σ_ (i  j)^(i  j), ℰ_ (i  j)^(i  j)and u_ i^iare the basic equations of the stability problem.

In the case of gravity forces, as they do not change in magnitude and direction, their incremental load X_ i^i≡ 0. In the case of centrifugal forces..., the load changes but the increments depend on the buckling deformations and belong to the unknowns of the problem.

Application of equ. (10.4) to the buckling of a plane plate. We suppose the plate loaded by edge forces only (hence X_ i^i≡ 0), acting in its middle plane. The stress system is that of a plane slab with the stresses Overscript[σ, _] _ (αβ)^(αβ)uniformly distributed across the thickness (Overscript[σ, _] _ (αβ)^(αβ) _ (; 3)≡0), while Overscript[σ, _] _ (α3)^(α3)=Overscript[σ, _] _ (33)^(33)=0.

We introduce the tensor-and-shear tensor Overscript[N, _] _ (αβ)^(αβ), and use all the notations of the plane stress section in Chapter 7:

Nbuu[red @ α, red @ β] == h σbuu[red @ α, red @ β]

Overscript[N, _] _ (αβ)^(αβ) == h Overscript[σ, _] _ (αβ)^(αβ)

In the unstable domain, the plate buckles, and each point of the middle plane undergoes a deflection normal to that planeu_ 3^3==w, function on x_ α^α but not on x_ 3^3=z: points not on the middle plane undergo displacements {w,u_ α^α}, where u_ α^αis given by equation u_ α^α==w_ (;  α)^(;  α) x_ 3^3==z w_ (;  α)^(;  α)(equation before equation (7.48) (involving the conservation of the normal).
The incremental strains ℰ_ (α  β)^(α  β)and stresses σ_ (α  β)^(α  β) are linear functions of z (eqs. (7.48)) and (7.19)). These stresses produce bending and twisting moments M_ (α  β)^(α  β)(see for instance eq.(7.55)), but no addition N_ (α  β)^(α  β)to the prebuckling force Overscript[N, _] _ (αβ)^(αβ).

Now, we integrate (10.4) across the plate thickness, for i=3. The integrant is :

(res104/.i→3/.Xu[i_] →0)/.uu[red @ 3] →Tensor[w]

res = PartialSumHold[red @ 3, {red @ β, red @ γ}]/@%

σ_ (j3)^(j3) _ (; j) + (Overscript[σ, _] _ (jk)^(jk) w_ (; k)) _ (; j) == 0

In this expression, we note that Overscript[σ, _] _ (3β)^(3β) =Overscript[σ, _] _ (3γ)^(3γ)=0,w_ (; 3)=0 :

res[[1]]//ReleaseHold//SymmetricStandardOrder[σb]

res1 = %/.Overscript[σ, _] _ (3β)^(3β) →0/.Overscript[σ, _] _ (3γ)^(3γ) →0/.w_ (; 3) →0

so that integration of (10.4) reduces to:

     +\h/2 ∫      res1 dz == 0      -\h/2

The first term gives,

res1[[1]]

CovariantD[Tensor[\[Sigma], List[red[i], red[j]], List[Void, Void]], red[k]] ;

res1[[1]] == (%//ExpandCovariantD[labsz, red @ a])/.{i→3, j→3, k→3}//PartialDToDif

Print["and from equations (8.4) and (8.5) : "]

(%%/.Overscript[Γ, _] _ (33a)^(33a) →0)

σ_ (33)^(33) _ (; 3)

σ_ (33)^(33) _ (; 3) == σ_ (33)^(33) _ (, 3) + Overscript[Γ, _] _ (33a)^(33a) σ_ (3a)^(3a) + Overscript[Γ, _] _ (33a)^(33a) σ_ (a3)^(a3)

and from equations (8.4) and (8.5) :

σ_ (33)^(33) _ (; 3) == σ_ (33)^(33) _ (, 3)

It is zero as there is no stress on the faces of the plate ( x_3^3==z),

The term,

     +\h/2 ∫      (res1[[3]]) dz      -\h/2

     + h/2 ∫      dz w_ (; γ) Overscript[σ, _] _ (βγ)^(βγ) _ (; β)      - h/2

vanishes, because of relation (7.9), σ_ (βα)^(βα) _ (; β)+X_α^α==σ_ (βα)^(βα) _ (; β)==0. It remains,

          +\h/2 0 == ∫      (res1[[2]] + res1[[4]]) dz == -CovariantD[Qu[red @ β], red @ β] + w_ (; γβ) Nbuu[red @ β, red @ γ]           -\h/2

Using eqs. (7.52a,b), we can relate at equilibrium the transverse shear force Q^β produced by the buckling, to the initial plane stress tensor Overscript[N, _] _ (βγ)^(βγ). The curvature  w_ (; γβ) of the buckled plate couples the two.

(*10.5*)ResultFrame[res105 = CovariantD[Qu[red @ α], red @ α] == CovariantD[Tensor[w], {red @ α, red @ β}] Nbuu[red @ α, red @ β]]

      Q_α^α_ (; α) == w_ (; αβ) Overscript[N, _] _ (αβ)^(αβ)       (10.5)

In a similar manner we can derive a moment equation. The integrant from(10.4) where iα, is

(res104/.i→α/.Xu[i_] →0)

res = PartialSumHold[red @ 3, {red @ β, red @ γ}]/@%

σ_ (jα)^(jα) _ (; j) + (Overscript[σ, _] _ (jk)^(jk) u_α^α_ (; k)) _ (; j) == 0

res[[1]]//ReleaseHold//SymmetricStandardOrder[σb]

res1 = %/.Overscript[σ, _] _ (3β_)^(3β_) →0

and the moment equation,

     +\h/2 ∫      res1 z dz == 0      -\h/2

Integrating by parts the first term, and as the stress σ_ (3α)^(3α) on the surfaces z=±h/2 is zero,

            +\h/2 RES1 = ∫      res1[[1]] z dz == Qu[red @ α]             -\h/2

     + h/2 ∫      dz z σ_ (3α)^(3α) _ (; 3) == Q_α^α      - h/2

Using eqs.(7.52c), M_ (αβ)^(αβ)==-\!\(∫\_\(\(-\\ h\)/2\)\%\(\(+\\ h\)/2\)\) dz z σ_ (αβ)^(αβ),

            +\h/2 RES2 = ∫      res1[[2]] z dz == CovariantD[-Muu[red @ β, red @ α], red @ β]             -\h/2

     + h/2 ∫      dz z σ_ (βα)^(βα) _ (; β) == -M_ (βα)^(βα) _ (; β)      - h/2

and for the remaining integrals, we use the kinematic relation  u_ α^α==z w_ (;  α)^(;  α), and again Overscript[σ, _] _ (βγ)^(βγ) _ (; β)=0

Finally the term w^(; α) _ (; γβ) Overscript[σ, _] _ (βγ)^(βγ) do not depend on z, so that

RES3 = RES34[[1]] == w^(; α) _ (; γβ) Overscript[σ, _] _ (βγ)^(βγ) ∫_ (-h/2)^(+h/2) z^2z

and with the definition of the bending stiffness  K== (-h^3Ε)/(12 (ν^2 - 1)) ,

RES3 = RES34[[1]] == (K  w^(; α) _ (; γβ) ) (ν^2 - 1) Overscript[σ, _] _ (βγ)^(βγ)/Ε

As shown in Flügge, this contribution RES3 can be neglected. We obtain,

RES1[[2]] + RES2[[2]] == 0

-M_ (βα)^(βα) _ (; β) + Q_α^α == 0

(*10.6*)ResultFrame[res106 = RES1[[2]] + RES2[[2]] == 0//Simplify]

      M_ (βα)^(βα) _ (; β) == Q_α^α      (10.6)

Notice the similarity with equ. (7.57) when m_ α^α=0(external moments absent here).

If we eliminate Q_ (α  ;  α)^(α  ;  α)between (10.5) and (10.6) we find,

res105

CovariantD[#, red @ α] &/@res106(*10.7*)

ResultFrame[res107 = (%[[2]]/.{α→β, β→α}) == %%[[2]]]

Q_α^α_ (; α) == w_ (; αβ) Overscript[N, _] _ (αβ)^(αβ)

M_ (βα)^(βα) _ (; βα) == Q_α^α_ (; α)

      Q_β^β_ (; β) == w_ (; αβ) Overscript[N, _] _ (αβ)^(αβ)       (10.7)

To conclude this chapter, let us consider the case of isotropic material. the moments M_ (α  β)^(α  β)are connected with the deflection w via the same equ. (7.56) as for plate bending.

res756 = M_ (αβ)^(αβ) == K (-1 + ν) w^(; αβ) - K ν w_ (; η)^(; η) g_ (αβ)^(αβ)

M_ (αβ)^(αβ) == K (-1 + ν) w^(; αβ) - K ν w_ (; η)^(; η) g_ (αβ)^(αβ)

After differentiation,

CovariantD[#, {red @ α, red @ β}] &/@res756//CovariantDSimplify[, g, e]//MetricSimplifyD[g]

%/.η→α//SymmetricStandardOrder[w] (*10.8*)

ResultFrame[res108 = -%[[2]] == -res107[[2]]]

M_ (αβ)^(αβ) _ (; αβ) == -K (w^(; αβ)) _ (; αβ)


Created by Mathematica  (November 27, 2007) Valid XHTML 1.1!