12. Compilation of Tensor Formulas

Initialization

Needs["TensorCalculus4`Tensorial`"]

Needs["TContinuumMechanics2`TContinuumMechanics`"]

oldflavors = IndexFlavors ;

ClearIndexFlavor/@oldflavors ;

DeclareIndexFlavor[{black, Black}, {red, Red}, {green, ForestGreen}, {star, SuperStar}, {blue, Blue}, {hat, OverHat}, {tilde, OverTilde}, {bar, OverBar}]

Base2d = {1, 2} ;

Base3d = {1, 2, 3} ;

DeclareBaseIndices[Base3d] ;

TensorLabelFormat[bh, OverHat[b]]

TensorLabelFormat[h, OverHat[]]

TensorLabelFormat[h, OverHat[]]

TensorLabelFormat[ah, OverHat[a]]

TensorLabelFormat[Γb, OverBar[Γ]]

TensorLabelFormat[eb, OverBar[e]]

Print[General surface (z≠0)]

{{, g, eb, Γb, η, h}, {basis symbol, metric tensor, permutation tensor, Christoffel symbol, strain tensor, deformed basis symbol}}//Transpose//TableForm

Print[Middle surface (z = 0)]

General surface (z≠0)

e basis symbol
g metric tensor
Overscript[e, _] permutation tensor
Overscript[Γ, _] Christoffel symbol
η strain tensor
Overscript[,^] basis deformed symbol

Middle surface (z = 0)

a basis symbol
a metric tensor
e permutation tensor
Γ Christoffel symbol
E strain tensor
Overscript[,^] basis deformed symbol
Overscript[a,^] deformed metric tensor
Overscript[b,^] curvature deformed tensor

NB : The formulas written res... are essentially equivalent to the notation used in the preceding chapters. The first digit gives the chapter number, the others the order in the chapter. Of course only the final result is reported here, and the reader is invited to go to the corresponding chapter for details.
For convenience, here we have not introduced
Tensor Shortcuts, but directly the interpreted outputs. This makes the formula particularly clear. To obtain explicit inputs, we only have to use "Convert to InputForm" in the menu  Cell, or to apply  resXXX//InputForm  to  resXXX.
Tensor Shorcuts have to be introduced by the reader when using specific formulas.

Important remark on the hidden structures :
Only the FullForm (or the InputForm) contains the whole information of the expressions.
Example :

{t1 = Tensor[red @ b], t2 = StyleForm[b, FontColor→RGBColor[1., 0., 0.]], t3 = StyleForm[b, FontColor→RGBColor[1., 0., 0.]]}

t2//FullForm

t3//FullForm   (* t2 is equal to t1, not t3  *)

{b, b, b}

Tensor[red[b]]

StyleForm[b, Rule[FontColor, RGBColor[1., 0., 0.]]]

Mathematical Formulas

Conventions

Latin indices i, j, k, ... = 1, 2, 3.

Greek indices α, β, γ, ... = 1, 2.

Basis

The various basis are distinguished by their flavor (black, red, blue, hat, star, tilde,...). The "black" basis is generally used for the orthornormal basis.

Base vectors and metric tensor

We mostly used _i^ito designate the basis vectors.
The associated metric tensor is g_ (ij)^(ij)==_i^i._j^j

Tensor[g, List[Void, Void], List[i, j]] == Dot[Tensor[, List[Void], List[i]], Tensor[, List[Void], List[j]]]

g_ (ij)^(ij) == _i^i . _j^j

Tensors

Notations :

Tf := Tensor[f]

Permutation pseudotensor symbol  ε    (ε is not a tensor! )

Our notations are different from that in Flügge's book.

ε_ijk = ε^ijk can be evaluated using PermutationSymbolRule[ε]

ε_ijk = ε^ijk_ = +1 if i, j, k are cyclic

            = -1 if i, j, k are anticyclic

            =    0 if i, j, k are acyclic (two or three identical indices)

In two dimensions : ε_12 = +1 ;   ε_21 = -1 ;   ε_11 = ε_22 =    0 ;

Permutation or LeviCivita tensor  e

In a "red" basis (flavor = red), we note  flavor(g)==g==det(g_ (i  j)^(i  j))  

e_ (ijk)^(ijk) == (g)^1/2 ε_ (ijk)^(ijk)

e_ (ijk)^(ijk) == ε_ (ijk)^(ijk)/(g)^1/2

e_ (ijk)^(ijk) == (g)^1/2 ε_ (ijk)^(ijk)

e_ (ijk)^(ijk) == ε_ (ijk)^(ijk)/(g)^1/2

See also  PermutationPseudotensor, PermutationSymbolRule,  LeviCivitaOrder, LeviCivitaSimplify, FullLeviCivitaExpand,...

Coordinate transformation

A transformation from a "blue" basis to a "red" basis is written:

_i^i == _j^j β_ (ji)^(ji)

_i^i == _j^j β_ (ji)^(ji)

Determinants

Δ == det[β_ (ji)^(ji)]

1/Δ == det[β_ (ij)^(ij)]

Δ == det[β_ (ji)^(ji)]

1/Δ == det[β_ (ij)^(ij)]

res31 = 1/Δ == flavor[g]^(1/2) == g^(1/2)

1/Δ == flavor[g]^(1/2) == g^(1/2)

Christoffel symbols

Notations of

_i^i_ (, j) == _k^k Γ_ (kji)^(kji)

_i^i_ (, j) == _k^k Γ_ (kji)^(kji)

_i^i_ (, j) == -_k^k Γ_ (ikj)^(ikj)

_i^i_ (, j) == _k^k Γ_ (kji)^(kji)

_i^i_ (, j) == _k^k Γ_ (kji)^(kji)

_i^i_ (, j) == -_k^k Γ_ (ikj)^(ikj)

and associated operators :

_i^i_ (, j)//ChristoffeluSymbol[, Γ, k]

_i^i_ (, j)//ChristoffeldSymbol[, Γ, k]

_i^i_ (, j)//ChristoffeluSymbol[, Γ, k]

_k^k Γ_ (kij)^(kij)

_k^k Γ_ (kij)^(kij)

-_k^k Γ_ (ijk)^(ijk)

Symmetry :

Γ_ (kij)^(kij) == Γ_ (kji)^(kji)

Γ_ (kij)^(kij) == Γ_ (kji)^(kji)

Γ_ (kij)^(kij) == Γ_ (kji)^(kji)

Γ_ (kij)^(kij) == Γ_ (kji)^(kji)

or using :

TensorSymmetry[Γ, 3] = Symmetric[2, 3] ;

Γ_ (kji)^(kji)//SymmetrizeSlots[]

Γ_ (kij)^(kij)

Relation with the Metric Tensor :

res51 = 2 Γ_ (kij)^(kij) == -g_ (ij)^(ij) _ (, k) + g_ (jk)^(jk) _ (, i) + g_ (ki)^(ki) _ (, j)

2 Γ_ (kij)^(kij) == -g_ (ij)^(ij) _ (, k) + g_ (jk)^(jk) _ (, i) + g_ (ki)^(ki) _ (, j)

Covariant derivatives

First derivatives

res52 = v_i^i_ (; j) == v_i^i_ (, j) + v_k^k Γ_ (ikj)^(ikj)

v_i^i_ (; j) == v_i^i_ (, j) + v_k^k Γ_ (ikj)^(ikj)

res53 = v_i^i_ (; j) == v_i^i_ (, j) - v_k^k Γ_ (kji)^(kji)

v_i^i_ (; j) == v_i^i_ (, j) - v_k^k Γ_ (kji)^(kji)

Note : Difference between general tensor and scalar tensors in some covariant derivations :

SetScalarSingleCovariantD[True]

Tf := Tensor[f]

CovariantD[Tf, red @ i]               (*  Scalar Tensor  *)

SetScalarSingleCovariantD[False]     (* allows to work with Scalar or General Tensors  *)

CovariantD[Tf, red @ i] (* example *)

CovariantD[Tf, red @ i]/.Tf→t_ (uv)^(uv) (* while with SetScalarSingleCovariantD[True] *)

SetScalarSingleCovariantD[True]

CovariantD[Tf, red @ i]/.Tf→t_ (uv)^(uv)

f_ (, i)

f_ (; i)

t_ (uv)^(uv) _ (; i)

t_ (uv)^(uv) _ (, i)

For a second order tensor

A_ (ij)^(ij) _ (; k) == A_ (ij)^(ij) _ (, k) - A_ (hj)^(hj) Γ_ (hki)^(hki) - A_ (ih)^(ih) Γ_ (hkj)^(hkj)

A_ (ij)^(ij) _ (; k) == A_ (ij)^(ij) _ (, k) - A_ (ih)^(ih) Γ_ (hkj)^(hkj) + A_ (hj)^(hj) Γ_ (ikh)^(ikh)

A_ (ij)^(ij) _ (; k) == A_ (ij)^(ij) _ (, k) - A_ (hj)^(hj) Γ_ (hki)^(hki) + A_ (ih)^(ih) Γ_ (jkh)^(jkh)

A_ (ij)^(ij) _ (; k) == A_ (ij)^(ij) _ (, k) + A_ (hj)^(hj) Γ_ (ikh)^(ikh) + A_ (ih)^(ih) Γ_ (jkh)^(jkh)

A_ (ij)^(ij) _ (; k) == A_ (ij)^(ij) _ (, k) - A_ (hj)^(hj) Γ_ (hki)^(hki) - A_ (ih)^(ih) Γ_ (hkj)^(hkj)

A_ (ij)^(ij) _ (; k) == A_ (ij)^(ij) _ (, k) - A_ (ih)^(ih) Γ_ (hkj)^(hkj) + A_ (hj)^(hj) Γ_ (ikh)^(ikh)

A_ (ij)^(ij) _ (; k) == A_ (ij)^(ij) _ (, k) - A_ (hj)^(hj) Γ_ (hki)^(hki) + A_ (ih)^(ih) Γ_ (jkh)^(jkh)

A_ (ij)^(ij) _ (; k) == A_ (ij)^(ij) _ (, k) + A_ (hj)^(hj) Γ_ (ikh)^(ikh) + A_ (ih)^(ih) Γ_ (jkh)^(jkh)

Second derivatives

res55 = v_i^i_ (; jk) - v_i^i_ (; kj) == R_ (mijk)^(mijk) v_m^m

v_i^i_ (; jk) - v_i^i_ (; kj) == R_ (mijk)^(mijk) v_m^m

res56 = R_ (mijk)^(mijk) == -Γ_ (mij)^(mij) _ (, k) + Γ_ (mik)^(mik) _ (, j) + Γ_ (lik)^(lik) Γ_ (mjl)^(mjl) - Γ_ (lij)^(lij) Γ_ (mkl)^(mkl)

R_ (mijk)^(mijk) == -Γ_ (mij)^(mij) _ (, k) + Γ_ (mik)^(mik) _ (, j) + Γ_ (lik)^(lik) Γ_ (mjl)^(mjl) - Γ_ (lij)^(lij) Γ_ (mkl)^(mkl)

res57 = _ (, j) == u_i^i_ (; j) _i^i

_ (, j) == u_i^i_ (; j) _i^i

res58 = _ (, jk) == _i^i (u_i^i_ (; jk) + u_i^i_ (; h) Γ_ (hjk)^(hjk))

_ (, jk) == _i^i (u_i^i_ (; jk) + u_i^i_ (; h) Γ_ (hjk)^(hjk))

Special tensor

 res54 = e_ (123)^(123) _ (, k) == e_ (123)^(123) Γ_ (mkm)^(mkm)

e_ (123)^(123) _ (, k) == e_ (123)^(123) Γ_ (mkm)^(mkm)

Vector field operators

Gradient, Divergence, Curl, Laplacian

See TGrad, TDiv, TCurl, TLaplacian.

Tf := Tensor[f]

 = u_i^i _i^i

u_i^i _i^i

TGrad[, red @ i][Tf]

TDiv[, g, red @ k][]

TCurl[, g, red/@{i, j, k}, e][]

TLaplacian[, g, red @ i, red @ j][Tf]

f_ (, i) _i^i

u_k^k_ (; k)

u_j^j_ (; i) e_ (ijk)^(ijk) _k^k

f_ (; ji) g_ (ji)^(ji)

Integral theorems

Divergence theorem (Gauss' theorem) in three dimension:

∫  .A == ∫  TDiv   V      S                            V

∫  .A == ∫  TDiv   V      S                            V

circulation theorem (Stokes' theorem):

∫   s == ∫  (TCurl ).A      C                            S

res510 = ∫   ds_i^i u_i^i == ∫   u_j^j_ (; i) dr_p^p dt_q^q e_ (pqk)^(pqk) e_ (ijk)^(ijk)               C                       S

∫   s == ∫  (TCurl ).A      C                            S

∫   ds_i^i u_i^i == ∫   u_j^j_ (; i) dr_p^p dt_q^q e_ (pqk)^(pqk) e_ (ijk)^(ijk)      C                       S

Curvature of a surface

b_ (α  β)^(α  β)is the curvature tensor   ( in differential geometry {b_ (1  1)^(1  1),b_ (1  2)^(1  2)==b_ (2  1)^(2  1),b_ (2  2)^(2  2)}, are denoted {E,F,G}).

res89 = _3^3_ (, α) == -b_ (αβ)^(αβ) _β^β

res814 = _3^3_ (, α) == -b_ (αβ)^(αβ) _β^β

_3^3_ (, α) == -b_ (αβ)^(αβ) _β^β

_3^3_ (, α) == -b_ (αβ)^(αβ) _β^β

Mean curvature

DeclareBaseIndices[Base2d] ;

res815 = b_ (αα)^(αα) == (b_ (αα)^(αα)//EinsteinSum[])

DeclareBaseIndices[Base3d] ;

b_ (αα)^(αα) == b_ (11)^(11) + b_ (22)^(22)

Gaussian curvature

DeclareBaseIndices[Base2d] ;

DeclareBaseIndices[Base3d] ;

-b_ (12)^(12) b_ (21)^(21) + b_ (11)^(11) b_ (22)^(22)

The _ α^α are the basis vectors of the surface:

res810 = _α^α_ (, β) . _3^3 == b_ (βα)^(βα)

d_3^3 == _3^3_ (, α) dx_α^α == -b_ (αβ)^(αβ) dx_α^α _β^β

d_3^3 . "d" == d_3^3 . (dx_α^α _α^α) == -b_ (αβ)^(αβ) dx_α^α dx_β^β

_α^α_ (, β) . _3^3 == b_ (βα)^(βα)

d_3^3 == _3^3_ (, α) dx_α^α == -b_ (αβ)^(αβ) dx_α^α _β^β

d_3^3 . d == d_3^3 . (dx_α^α _α^α) == -b_ (αβ)^(αβ) dx_α^α dx_β^β

Covariant derivative on a curved surface

res817 = ("") _ (, β) == u_i^i_ (; β) _i^i == u_3^3_ (; β) _3^3 + u_α^α_ (; β) _α^α

() _ (, β) == u_i^i_ (; β) _i^i == u_3^3_ (; β) _3^3 + u_α^α_ (; β) _α^α

res820 = u_α^α_ (; β) →u_α^α_ (| β) - b_ (αβ)^(αβ) u_3^3

u_3^3_ (; β) →u_3^3_ (, β) + b_ (γβ)^(γβ) u_γ^γ
u_α^α_ (; β) →u_α^α_ (| β) - b_ (αβ)^(αβ) u_3^3

u_α^α_ (; β) →u_α^α_ (| β) - b_ (αβ)^(αβ) u_3^3

Here the "vertical bar" indicates the two-dimensional covariant derivative.

ruleu1 = u_α^α_ (; β) →u_α^α_ (, β) - b_ (αβ)^(αβ) u_3^3 + u_γ^γ Γ_ (αβγ)^(αβγ)

ruleu2 = u_3^3_ (; β) →u_3^3_ (, β) + b_ (γβ)^(γβ) u_γ^γ

Cd2dRule = u_α_^α__ (, β_) - u_γ_^γ_ Γ_ (γ_α_β_)^(γ_α_β_) →u_α^α_ (| β)

u_α^α_ (; β) →u_α^α_ (, β) - b_ (αβ)^(αβ) u_3^3 + u_γ^γ Γ_ (αβγ)^(αβγ)

u_3^3_ (; β) →u_3^3_ (, β) + b_ (γβ)^(γβ) u_γ^γ

u_α_^α__ (, β_) - u_γ_^γ_ Γ_ (γ_α_β_)^(γ_α_β_) →u_α^α_ (| β)

Gauss-Coddazzi equation

b_ (αβ)^(αβ) _ (| δ) == b_ (αδ)^(αδ) _ (| β)
b_ (αβ)^(αβ) _ (| δ) == b_ (αδ)^(αδ) _ (| β)

Riemann-Christoffel tensor (using res825 and res827)

Shell geometry

res92 = μ_ (γα)^(γα) == a_ (γα)^(γα) - z b_ (γα)^(γα)

μ_ (γα)^(γα) == a_ (γα)^(γα) - z b_ (γα)^(γα)

λ_ (βα)^(βα) == z b_ (βα)^(βα) + z^2 b_ (βρ)^(βρ) b_ (ρα)^(ρα) + g_ (βα)^(βα)

g_ (βδ)^(βδ) == λ_ (βρ)^(βρ) μ_ (ρδ)^(ρδ) == λ_ (ρδ)^(ρδ) μ_ (βρ)^(βρ)

Note that the mixed metric tensors a_ (γ  α)^(γ  α)and g_ (β  δ)^(β  δ)are Krönecker delta.   z is the distance along the normal to the middle surface which is at z = 0.

_α^α == _α^α - z b_ (γα)^(γα) _γ^γ == _γ^γ μ_ (γα)^(γα)

res93 = _α^α == _γ^γ λ_ (αγ)^(αγ)

_α^α == _γ^γ λ_ (αγ)^(αγ)

res911 = μ == Det[μ_ (βα)^(βα)] == 1 + z^2 b - z b_ (αα)^(αα)       (*with res913*)

res913 = 2 μ == e_ (γδ)^(γδ) e_ (αβ)^(αβ) μ_ (γα)^(γα) μ_ (δβ)^(δβ)

μ == Det[μ_ (βα)^(βα)] == 1 + b z^2 - z b_ (αα)^(αα)

2 μ == e_ (γδ)^(γδ) e_ (αβ)^(αβ) μ_ (γα)^(γα) μ_ (δβ)^(δβ)

res916 = (μ) _ (, λ) == μ_ (δβ)^(δβ) _ (| λ) μ λ_ (βδ)^(βδ)

res917 = (μ) _ (, 3) == -μ b_ (δγ)^(δγ) λ_ (γδ)^(γδ)

(μ) _ (, λ) == μ_ (δβ)^(δβ) _ (| λ) μ λ_ (βδ)^(βδ)

(μ) _ (, 3) == -μ b_ (δγ)^(δγ) λ_ (γδ)^(γδ)

res920 = Overscript[Γ, _] _ (α3β)^(α3β) == -b_ (βγ)^(βγ) λ_ (αγ)^(αγ)

res922 = Overscript[e, _] _ (αβ)^(αβ) == μ e_ (αβ)^(αβ)

Overscript[Γ, _] _ (α3β)^(α3β) == -b_ (βγ)^(βγ) λ_ (αγ)^(αγ)

Overscript[e, _] _ (αβ)^(αβ) == μ e_ (αβ)^(αβ)

Mechanical Formulas

Moment of a force

 " == ×"<br />M_l^l == e_ (ijl)^(ijl) P_j^j r_i^i

 == × (M_l^l == e_ (ijl)^(ijl) P_j^j r_i^i)

Strain

g is the metric tensor before deformation,  g the metric tensor after deformation.

γ_ (ij)^(ij) == 2 ℰ_ (ij)^(ij)

res21 = γ_ (ij)^(ij) == -g_ (ij)^(ij) + ℊ_ (ij)^(ij)

res22 = -γ_ (ij)^(ij) == -g_ (ij)^(ij) + ℊ_ (ij)^(ij)

γ_ (ij)^(ij) == 2 ℰ_ (ij)^(ij)

γ_ (ij)^(ij) == -g_ (ij)^(ij) + ℊ_ (ij)^(ij)

-γ_ (ij)^(ij) == -g_ (ij)^(ij) + ℊ_ (ij)^(ij)

Stress

res41 = "d" == d_i^i _j^j σ_ (ij)^(ij)

res41b = dF_i^i == d_i^i σ_ (ij)^(ij)

d == d_i^i _j^j σ_ (ij)^(ij)

dF_i^i == d_i^i σ_ (ij)^(ij)

res42 = σ_ (ij)^(ij) == σ_ (ji)^(ji)

res42b = σ_ (ij)^(ij) == σ_ (ji)^(ji)

(* but *)    σ_ (ij)^(ij) ≠σ_ (ji)^(ji)

σ_ (ij)^(ij) == σ_ (ji)^(ji)

σ_ (ij)^(ij) == σ_ (ji)^(ji)

σ_ (ij)^(ij) ≠σ_ (ji)^(ji)

Hooke's law, anisotropic material:

res43 = σ_ (ij)^(ij) == ℰ_ (lm)^(lm) _ (ijlm)^(ijlm)

res43b = ℰ_ (lm)^(lm) == C_ (ijlm)^(ijlm) σ_ (ij)^(ij)

_ (ijlm)^(ijlm) == _ (jilm)^(jilm) == _ (ijml)^(ijml) == _ (lmij)^(lmij)

TensorSymmetry[ℰ, 2] = Symmetric[1, 2] ;

TensorSymmetry[σ, 2] = Symmetric[1, 2] ;

σ_ (ij)^(ij) == ℰ_ (lm)^(lm) _ (ijlm)^(ijlm)

ℰ_ (lm)^(lm) == C_ (ijlm)^(ijlm) σ_ (ij)^(ij)

_ (ijlm)^(ijlm) == _ (jilm)^(jilm) == _ (ijml)^(ijml) == _ (lmij)^(lmij)

Elastic moduli, isotropic material:

res49 = _ (ijlm)^(ijlm) == μ (g_ (im)^(im) g_ (jl)^(jl) + g_ (il)^(il) g_ (jm)^(jm)) + λ g_ (ij)^(ij) g_ (lm)^(lm)

res410 = _ (ijlm)^(ijlm) == (Ε (g_ (im)^(im) g_ (jl)^(jl) + g_ (il)^(il) g_ (jm)^(jm) + (2 ν g_ (ij)^(ij) g_ (lm)^(lm))/(1 - 2 ν)))/(2 (1 + ν))

_ (ijlm)^(ijlm) == μ (g_ (im)^(im) g_ (jl)^(jl) + g_ (il)^(il) g_ (jm)^(jm)) + λ g_ (ij)^(ij) g_ (lm)^(lm)

_ (ijlm)^(ijlm) == (Ε (g_ (im)^(im) g_ (jl)^(jl) + g_ (il)^(il) g_ (jm)^(jm) + (2 ν g_ (ij)^(ij) g_ (lm)^(lm))/(1 - 2 ν)))/(2 (1 + ν))

Lamé moduli:

res47 = {λ == -(Ε ν)/((1 + ν) (-1 + 2 ν)) == (2 G ν)/(1 - 2 ν), μ == Ε/(2 (1 + ν)) == G}

{λ == -(Ε ν)/((1 + ν) (-1 + 2 ν)) == (2 G ν)/(1 - 2 ν), μ == Ε/(2 (1 + ν)) == G}

Hooke's law, isotropic material:

res411 = σ_ (ip)^(ip) == (Ε (ℰ_ (ip)^(ip) + (ν g_ (ip)^(ip) ℰ_ (mm)^(mm))/(1 - 2 ν)))/(1 + ν)

res412 = σ_ (ip)^(ip) == 2 μ ℰ_ (ip)^(ip) + λ g_ (ip)^(ip) ℰ_ (mm)^(mm)

σ_ (ip)^(ip) == (Ε (ℰ_ (ip)^(ip) + (ν g_ (ip)^(ip) ℰ_ (mm)^(mm))/(1 - 2 ν)))/(1 + ν)

σ_ (ip)^(ip) == 2 μ ℰ_ (ip)^(ip) + λ g_ (ip)^(ip) ℰ_ (mm)^(mm)

res413 = Ε ℰ_ (ip)^(ip) == (1 + ν) σ_ (ip)^(ip) - ν g_ (ip)^(ip) σ_ (mm)^(mm)

Ε ℰ_ (ip)^(ip) == (1 + ν) σ_ (ip)^(ip) - ν g_ (ip)^(ip) σ_ (mm)^(mm)

res414 = σ_ (ii)^(ii) == (Ε ℰ_ (ii)^(ii))/(1 - 2 ν) == 3 K ℰ_ (ii)^(ii)

σ_ (ii)^(ii) == (Ε ℰ_ (ii)^(ii))/(1 - 2 ν) == 3 K ℰ_ (ii)^(ii)

Definitions :     {σ_ (i  i)^(i  i) →3 s, ℰ_ (i  i)^(i  i) →3 e}

HyddilDEF = {Tensor[σ, {i_, Void}, {Void, i_}] →3 * Tensor[s], Tensor[ℰ, {i_, Void}, {Void, i_}] →3 * Tensor[e]}

{σ_ (i_i_)^(i_i_) →3 s, ℰ_ (i_i_)^(i_i_) →3 e}

res415 = {e_ (ij)^(ij) == -e g_ (ij)^(ij) + ℰ_ (ij)^(ij), s_ (ij)^(ij) == -s g_ (ij)^(ij) + σ_ (ij)^(ij)}

{e_ (ij)^(ij) == -e g_ (ij)^(ij) + ℰ_ (ij)^(ij), s_ (ij)^(ij) == -s g_ (ij)^(ij) + σ_ (ij)^(ij)}

Hyddil = Ε e == (1 - 2 ν) s

Ε e == (1 - 2 ν) s

res416 = Ε e_ (ij)^(ij) == (1 + ν) s_ (ij)^(ij)

Ε e_ (ij)^(ij) == (1 + ν) s_ (ij)^(ij)

res417 = {s == (3 λ + 2 μ) e, s_ (ij)^(ij) == 2 μ e_ (ij)^(ij)}

{s == (3 λ + 2 μ) e, s_ (ij)^(ij) == 2 μ e_ (ij)^(ij)}

Elastic strain energy density (res44 and res419):

res44 =  == 1/2 ℰ_ (ij)^(ij) σ_ (ij)^(ij) == 1/2 ℰ_ (ij)^(ij) σ_ (ji)^(ji) == 1/2 (3 e s + e_ (ji)^(ji) s_ (ij)^(ij))

 == 1/2 ℰ_ (ij)^(ij) σ_ (ij)^(ij) == 1/2 ℰ_ (ij)^(ij) σ_ (ji)^(ji) == 1/2 (3 e s + e_ (ji)^(ji) s_ (ij)^(ij))

Dilatation energy (3 e s)/2; distortion energy  1/2 e_ (j  i)^(j  i) s_ (i  j)^(i  j)

isotropic material:

res420 = 3/2 (3 λ + 2 μ) e e + μ e_ (ij)^(ij) e_ (ij)^(ij)

3/2 (3 λ + 2 μ) e e + μ e_ (ij)^(ij) e_ (ij)^(ij)

Plasticity

yield condition:

s_ (ij)^(ij) s_ (ji)^(ji) == 2 k^2

s_ (ij)^(ij) s_ (ji)^(ji) == 2 k^2

res421 = 6 k^2 == 3 σ_ (ij)^(ij) σ_ (ji)^(ji) - σ_ (ii)^(ii) σ_ (jj)^(jj)

6 k^2 == 3 σ_ (ij)^(ij) σ_ (ji)^(ji) - σ_ (ii)^(ii) σ_ (jj)^(jj)

flow law:

res427 = Overscript[ℰ, .] _ (ij)^(ij) == λ s_ (ij)^(ij)

Overscript[ℰ, .] _ (ij)^(ij) == λ s_ (ij)^(ij)

Viscous fluid, viscous volume change:

res418 = {s == (3 λ + 2 μ) Overscript[e, .], s_ (ij)^(ij) == 2 μ Overscript[e, .] _ (ij)^(ij)}

{s == (3 λ + 2 μ) Overscript[e, .], s_ (ij)^(ij) == 2 μ Overscript[e, .] _ (ij)^(ij)}

Kinematic relations

The strain tensor can be expressed as a function of the displacements u_ i^i:

Linearized expression:

res24 = γ_ (ij)^(ij) == u_i^i_ (, j) + u_j^j_ (, i)

γ_ (ij)^(ij) == u_i^i_ (, j) + u_j^j_ (, i)

General expression:

res23 = γ_ (ij)^(ij) == u_i^i_ (, j) + u_j^j_ (, i) + u_k^k_ (, i) u_k^k_ (, j)

γ_ (ij)^(ij) == u_i^i_ (, j) + u_j^j_ (, i) + u_k^k_ (, i) u_k^k_ (, j)

compatibility

res64 = ℰ_ (ij)^(ij) _ (; kl) e_ (ikm)^(ikm) e_ (jln)^(jln) == 0

ℰ_ (ij)^(ij) _ (; kl) e_ (ikm)^(ikm) e_ (jln)^(jln) == 0

Equilibrium

res65 = σ_ (ji)^(ji) _ (; j) + X_i^i == 0

σ_ (ji)^(ji) _ (; j) + X_i^i == 0

Newton's law

res66 = σ_ (ji)^(ji) _ (; j) == -X_i^i + ρ Overscript[u, ..] _i^i

σ_ (ji)^(ji) _ (; j) == -X_i^i + ρ Overscript[u, ..] _i^i

Fundamental equation of the theory of elasticity

anisotropic, homogeneous

res67 = X_i^i + 1/2 (u_l^l_ (; mj) + u_m^m_ (; lj)) _ (ijlm)^(ijlm) == ρ Overscript[u, ..] _i^i

X_i^i + 1/2 (u_l^l_ (; mj) + u_m^m_ (; lj)) _ (ijlm)^(ijlm) == ρ Overscript[u, ..] _i^i

isotropic

res69 = μ u_i^i^(; j) _ (; j) + (λ + μ) u_j^j^(; i) _ (; j) + X_i^i == ρ Overscript[u, ..] _i^i

μ (u_i^i^(; j)) _ (; j) + (λ + μ) (u_j^j^(; i)) _ (; j) + X_i^i == ρ Overscript[u, ..] _i^i

Elastic waves

In the following expressions,  Δ is the Laplacian.
For instance :

CovariantD[Tensor[u, {Void}, {red[l]}], red[k]]

TLaplacian[, g, red @ q, red @ p][%]//MetricSimplifyD[g]

%≡ (%//LaplaceOp[Δ])

u_l^l_ (; k)

(u_l^l_ (; k)^(; q)) _ (; q)

(u_l^l_ (; k)^(; q)) _ (; q) ≡Δ[u_l^l_ (; k)]

general:

res610 = (λ + 2 μ) Δ[u] _i^i_ (; i) == ρ Overscript[u, ..] _i^i_ (; i) == c^2 (λ + 2 μ) Overscript[u, ..] _i^i_ (; i)

(λ + 2 μ) Δ[u] _i^i_ (; i) == ρ Overscript[u, ..] _i^i_ (; i) == c^2 (λ + 2 μ) Overscript[u, ..] _i^i_ (; i)

res613 = ε_ (klm)^(klm) (-ρ Overscript[u, ..] _l^l_ (; k) + μ Δ[u_l^l_ (; k)]) == 0

res613bis = (-u_l^l^(; j) _ (; jk) + Overscript[u, ..] _l^l_ (; k) Overscript[c, ~]^2) ε_ (klh)^(klh) == 0

ε_ (klm)^(klm) (-ρ Overscript[u, ..] _l^l_ (; k) + μ Δ[u_l^l_ (; k)]) == 0

(-(u_l^l^(; j)) _ (; jk) + Overscript[u, ..] _l^l_ (; k) Overscript[c, ~]^2) ε_ (klh)^(klh) == 0

dilatational wave:

res614 = -(ρ Overscript[u, ..] _i^i)/(λ + 2 μ) + Δ[u_i^i] == -c^2 Overscript[u, ..] _i^i + Δ[u] _i^i == 0

-(ρ Overscript[u, ..] _i^i)/(λ + 2 μ) + Δ[u_i^i] == -c^2 Overscript[u, ..] _i^i + Δ[u] _i^i == 0

shear wave:

res615 = -ρ Overscript[u, ..] _i^i + μ Δ[u_i^i] == -Overscript[c, ~]^2 Overscript[u, ..] _i^i + Δ[u] _i^i == 0

-ρ Overscript[u, ..] _i^i + μ Δ[u_i^i] == -Overscript[c, ~]^2 Overscript[u, ..] _i^i + Δ[u] _i^i == 0

Incompressible fluid

continuity equation

res632 = v_i^i_ (; i) == 0

v_i^i_ (; i) == 0

Navier-Stokes equation

res622 = -p^(; i) + μ v_i^i^(; j) _ (; j) - ρ v_i^i_ (; j) v_j^j + X_i^i - ρ Overscript[v, .] _i^i == 0

μ (v_i^i^(; j)) _ (; j) - p^(; i) - ρ v_i^i_ (; j) v_j^j + X_i^i - ρ Overscript[v, .] _i^i == 0

invicid flow

res627 = v_i^i == Φ_ (; i) == Φ_ (, i)

v_i^i == Φ_ (; i) == Φ_ (, i)

Seepage flow

Darcy's law:

res631 = v_i^i == k_ (ij)^(ij) (-p_ (; j) + X_j^j) == (-p + Ω) _ (; j) k_ (ij)^(ij)

v_i^i == k_ (ij)^(ij) (-p_ (; j) + X_j^j) == (-p + Ω) _ (; j) k_ (ij)^(ij)

differential equation of the pressure field, general:

From  res631 and  res632:

(k_ (ij)^(ij) X_j^j) _ (; i) == (k_ (ij)^(ij) p_j^j) _ (; i)

%//UnnestTensor

(k_ (ij)^(ij) X_j^j) _ (; i) == (k_ (ij)^(ij) p_j^j) _ (; i)

X_j^j_ (; i) k_ (ij)^(ij) + k_ (ij)^(ij) _ (; i) X_j^j == p_j^j_ (; i) k_ (ij)^(ij) + k_ (ij)^(ij) _ (; i) p_j^j

differential equation of the pressure field, homogeneous medium:

p_ (; ij) k_ (ij)^(ij) == X_j^j_ (; i) k_ (ij)^(ij)

p_ (; ij) k_ (ij)^(ij) == X_j^j_ (; i) k_ (ij)^(ij)

gross stress

res637 = σ_ (ji)^(ji) _ (; j) == -X_i^i + (p φ)^(; i)

σ_ (ji)^(ji) _ (; j) == φ^(; i) p + p^(; i) φ - X_i^i

Plane strain

Hooke's law

res77b = σ_ (α3)^(α3) == σ_ (3α)^(3α) == 0

res77c = σ_ (33)^(33) == (Ε ν ℰ_ (ζζ)^(ζζ))/((1 - 2 ν) (1 + ν))

σ_ (α3)^(α3) == σ_ (3α)^(3α) == 0

σ_ (33)^(33) == (Ε ν ℰ_ (ζζ)^(ζζ))/((1 - 2 ν) (1 + ν))

ℰ_ (αβ)^(αβ) == ((1 + ν) (σ_ (αβ)^(αβ) - ν g_ (αβ)^(αβ) σ_ (ζζ)^(ζζ)))/Ε

fundamental equation

res711 = u_α^α^(; β) _ (; β) + u_β^β^(; α) _ (; β)/(1 - 2 ν) + (2 (1 + ν) X_α^α)/Ε == 0

(u_α^α^(; β)) _ (; β) + (u_β^β^(; α)) _ (; β)/(1 - 2 ν) + (2 (1 + ν) X_α^α)/Ε == 0

Airy stress function
definition:

res713 = σ_ (αβ)^(αβ) == Φ_ (; λμ) e_ (αλ)^(αλ) e_ (βμ)^(βμ) - Ω g_ (αβ)^(αβ)

σ_ (αβ)^(αβ) == Φ_ (; λμ) e_ (αλ)^(αλ) e_ (βμ)^(βμ) - Ω g_ (αβ)^(αβ)

where,

X_α^α == Ω^(; α)

X_α^α == Ω^(; α)

Airy stress function
differential equation:

res716 = -(-1 + ν) Φ^(; αβ) _ (; αβ) == (1 - 2 ν) Ω^(; α) _ (; α)

(1 - ν) (Φ^(; αβ)) _ (; αβ) == (1 - 2 ν) (Ω^(; α)) _ (; α)

Plane stress

Hooke's law

ℰ_ (αβ)^(αβ) == ((1 + ν) σ_ (αβ)^(αβ) - ν g_ (αβ)^(αβ) σ_ (ζζ)^(ζζ))/Ε

fundamental equation:

res722 = u_α^α^(; β) _ (; β) - ((1 + ν) u_β^β^(; α) _ (; β))/(-1 + ν) + (2 (1 + ν) X_α^α)/Ε == 0

(u_α^α^(; β)) _ (; β) - ((1 + ν) (u_β^β^(; α)) _ (; β))/(-1 + ν) + (2 (1 + ν) X_α^α)/Ε == 0

Airy stress function
differential equation:

res723 = Φ^(; μρ) _ (; μρ) + (-1 + ν) Ω^(; ρ) _ (; ρ) == 0

(Φ^(; μρ)) _ (; μρ) + (-1 + ν) (Ω^(; ρ)) _ (; ρ) == 0

Torsion

stress function

res740 = τ_α^α == Φ_ (; γ) e_ (γα)^(γα)

τ_α^α == Φ_ (; γ) e_ (γα)^(γα)

res741 = Φ^(; γ) _ (; γ) == Εθ/(1 + ν) == 2 G θ

(Φ^(; γ)) _ (; γ) == Εθ/(1 + ν) == 2 G θ

torque

res747 = M == 2 "∫ Φ dA" == 2 "∫∫" Φ ds_β^β dt_α^α e_ (αβ)^(αβ)

M == 2 ∫ Φ dA == 2 ∫∫ Φ ds_β^β dt_α^α e_ (αβ)^(αβ)

Plates

elastic law:

differential equation

res760 = K w^(; αβ) _ (; αβ) == -m_α^α_ (; α) + p_3^3

K (w^(; αβ)) _ (; αβ) == -m_α^α_ (; α) + p_3^3

Shells

strains of the middle surface:

res934 = ℰ_ (αβ)^(αβ) == -w b_ (αβ)^(αβ) + 1/2 (u_α^α_ (| β) + u_β^β_ (| α))

ℰ_ (αβ)^(αβ) == 1/2 (u_α^α_ (| β) + u_β^β_ (| α)) - w b_ (αβ)^(αβ)

equilibrium

res954 = N_ (ηα)^(ηα) _ (| η) + p_α^α + b_ (αη)^(αη) Q_η^η == 0

N_ (ηα)^(ηα) _ (| η) + p_α^α + b_ (αη)^(αη) Q_η^η == 0

res956 = -Q_α^α_ (| α) + b_ (αβ)^(αβ) N_ (αβ)^(αβ) + p_3^3 == 0

-Q_α^α_ (| α) + b_ (αβ)^(αβ) N_ (αβ)^(αβ) + p_3^3 == 0

res958 = M_ (βα)^(βα) _ (| β) + m_α^α - Q_α^α == 0

M_ (βα)^(βα) _ (| β) + m_α^α - Q_α^α == 0

res959 = e_ (αβ)^(αβ) (b_ (αγ)^(αγ) M_ (γβ)^(γβ) + N_ (αβ)^(αβ)) == 0

e_ (αβ)^(αβ) (b_ (αγ)^(αγ) M_ (γβ)^(γβ) + N_ (αβ)^(αβ)) == 0

reduced equilibrium conditions

res960b = -M_ (αβ)^(αβ) _ (| αβ) + b_ (αβ)^(αβ) N_ (αβ)^(αβ) == m_α^α_ (| α) - p_3^3

-M_ (αβ)^(αβ) _ (| αβ) + b_ (αβ)^(αβ) N_ (αβ)^(αβ) == m_α^α_ (| α) - p_3^3

elastic law

Buckling of a plate

res108 = K w^(; αβ) _ (; αβ) == -w_ (; αβ) Overscript[N, _] _ (αβ)^(αβ)

K (w^(; αβ)) _ (; αβ) == -w_ (; αβ) Nb_ (αβ)^(αβ)


Created by Mathematica  (November 27, 2007) Valid XHTML 1.1!